United States Patent

US009465808B1

(12) (10) Patent No.: US 9,465,808 B1
Karr et al. 45) Date of Patent: Oct. 11, 2016
(54) DEDUPLICATION FEATURING 2010/0058013 Al 3/2010 Gelson et al. ...ooovee...... 711/162
" 2010/0077013 Al 3/2010 Clements et al. 707/822
VARIABLE-SIZE DUPLICATE DATA 2010/0077161 Al 3/2010 Stoakes et al. 7117162
DETECTION AND FIXED-SIZE DATA 2010/0094817 Al 4/2010 Ben-Shaul et al. 707/697
SEGMENT SHARING 2010/0106754 Al* 4/2010 Condit et al. 707/822
2010/0198797 Al 8/2010 Wideman ... 707/692
H . : H 2011/0099154 Al 4/2011 Maydew et al ... 707/692
(71) Applicant: s,ymalgzc Cosrporat"’n’ Mountain 2011/0231362 Al 9/2011 Attarde 707/609
iew, CA (US) 2011/0307447 Al* 12/2011 Sabaa et al. . 707/637
2012/0036319 Al* 2/2012 Bondurant L 7Ly
(72) Inventors: Ronald Karr, Palo Alto, CA (US); 2012/0124011 Al 5/2012 Spackman et al. 707/292
Graham Bromley, Dublin, CA (US); 2013/0212074 Al1* 8/2013 Romanski et al. 707/692
Deepak Patil, Roseville, MN (US)
OTHER PUBLICATIONS
(73) Assignee: Veritas Technologies LL.C, Mountain
View, CA (US) Bromley, Graham, Copending U.S. Appl. No. 12/766,177 entitled
“Self-Referential Deduplication,” filed Apr. 23, 2010.
(*) Notice: Subject to any disclaimer, the term of this .)
patent is extended or adjusted under 35 cited by examiner
U.S.C. 154(b) by 94 days.
(®) by v Primary Examiner — Hares Jami
(21) Appl. No.: 13/716,123 (74) Attorney, Agent, or Firm — Campbell Stephenson
LLP
(22) Filed: Dec. 15, 2012
57 ABSTRACT
(51) Int. CI. A hybrid deduplication system operates to detect variable-
GOG6F 17/30 (2006.01) sized deduplication matches, while performing the storage
(52) US.CL deduplication on fixed-size segments of data. The hybrid
CPC oo GO6F 17/30156 (2013.01) deduplication system calculates unique identifiers for vari-
(58) Field of Classification Search able-sized sections of data within a data stream being written
CPC ..o, GO6F 17/3015; GO6F 17/30156; to a dedup]icated data store. The hybrld dedup]ication Sys-
GO6F 17/30159 tem then compares those newly-calculated identifiers to
USPC e, 707/687, 692, 694 identifiers of variable-sized sections of data that have
See application file for complete search history. already been stored within the deduplicated data store. If a
. match is found, the hybrid deduplication system identifies
(56) References Cited the location of each of the fixed-size data segment(s),
already stored in the deduplicated data store, that include the
U.S. PATENT DOCUMENTS identified variable-sized section of data. Instead of writing
5,990,810 A 11/1999 WiAllIAMOS ooooooeooeooee 341/51 the sections that match already-existing sections to the
7,822,939 Bl 10/2010 Veprinsky et al. .. 711/170 deduplicated data store, the hybrid deduplication system
7,921,086 Bl 4/2011 Bromley et al. 707/692 simply causes the creation of a reference to the identified
8,234,468 B1* 7/2012 Deshmukh et al. . 711/162 storage locations, indicating that the data stream being
8,280,854 Bl 10/2012 Emmertccccccooenene. 707/664 . includes the d in th - 1
2008/0244204 Al 10/2008 Cremelie et al. 711162 Watten mncludes the data m these pre-existing storage loca-
2008/0310628 Al 12/2008 Fujioka et al. 380/201 tions.
2009/0083563 Al 3/2009 Murase 713/324
2010/0031086 Al 2/2010 Leppardcccoeoovvianrnnn 714/15 23 Claims, 5 Drawing Sheets

T

‘Gakulls now fingarpen o varisbg sizet
seoton ofncoming dta trsam
N

dentty e siore xed-size data seqment(s)

Store o ingerpint
2

variabeized secton
s

1

Stor rloer i
dsduplcated dta sreamfo alastre
w0

U.S. Patent

Oct. 11, 2016

Sheet 1 of 5

Client B

Client Data Stream B

Client A

Client Data Stream A

Data Store 150

US 9,465,808 B1

ClientC

Client Data Stream C

Backup Module 90

Hybrid Deduplication Module 100

Variable-Length Fingerprint
Module 110

Deduplication Match Module
120

Stream Generator 130

Backup A Reference Stream

Backup B Reference Stream

Backup C Reference Stream

Raw Data 15

w

Fingerprint Store 140

FIG. 1

U.S. Patent Oct. 11, 2016 Sheet 2 of 5 US 9,465,808 B1

Stream A

xyz123456thequickbrownfox45678

Stream B

ABC321thequickbrownfox98765432DEF543

Raw Data

xyz123 | 456the | quicko | rownfo | x45678 | ABC321 | 987654 | 32DEF5 | 43
1 R LN VLN N L O B S

NN AN PASNISNNUAN

Stream A Reference Stream Stream B Reference Stream

FIG. 2

U.S. Patent Oct. 11, 2016 Sheet 3 of 5 US 9,465,808 B1

=
v

Divide incoming data stream into variable-
sized sections
300

Calculate new fingerprint for a variable-sized
section of incoming data stream
305

Any
stored fingerprint match new
fingerprint?
310

Yes

A 4

No Identify the stored fixed-size data segment(s)
that include a match of the content in the
Store new fingerprint variable-sized section
325 315
\ 4 \ 4
Add variable-sized section of data to Add reference to the identified stored fixed-
deduplicated data stream; Add reference to size data segments in reference stream,
the fixed-size segment(s) containing the instead of adding the content in the variable-
variable-sized section to the reference stream sized section to the deduplicated data stream
330 320

Yes

ore variable-sized sections in
incoming data stream?
340

No FIG. 3

Store reference stream and add
deduplicated data stream to data store
350

v

&

US 9,465,808 B1

Sheet 4 of 5

Oct. 11, 2016

U.S. Patent

Aowspy Wa)sAS

v Old
[5%7 457
201n8(ebeln)g 301n0(] 9beInIS
dmyjoeg Aewuyd
(T4 744
7 Y 7 Y 201A8Q 301A9Q
induj fedsig
A A
) 4 4 v
VeV (%7 9z AR
a0BUaU| a0BUBU| Jajdepy aImonnselu|
abeioig 1nduyj Aeidsig UONBOIUNWILOY
7 Y 7y 7§
y y y
< A A A A A >
v v v v v
A _ _ 001 _
mommwé_ 0cy gy SINPOW 15
LOBOILNWILLOY 18||0u0D O/l 13]|0JJU0D \COC._GS_ Co_umo__ajbwh_ J0SS8201d
PUGAH
%%

x_

Oly

waisAg Bunndwon

US 9,465,808 B1

Sheet 5 of 5

Oct. 11, 2016

U.S. Patent

N)06S

2018

(NJ0ZS

801A8(]

T10ZS

301A3(]

(17063

8018(]

A

Jlqed NVS

866
fewy ebeio)g
Jusbije|

49

Janag

085

001
8INPOIN
uonesidnpaq
PUAAH

0%%
JOAIBS

h

(N)09S

301A8(]

17709G

30I1A8(]

S O
0E%
IET)
055 07
HOMIEN)
01G
Weln
4/ 008
2INIBYIYAIY YIOMIBN

US 9,465,808 B1

1

DEDUPLICATION FEATURING
VARIABLE-SIZE DUPLICATE DATA
DETECTION AND FIXED-SIZE DATA

SEGMENT SHARING

FIELD OF THE INVENTION

This invention relates to data storage and, more particu-
larly, data deduplication.

DESCRIPTION OF THE RELATED ART

Data deduplication is a technique used to reduce storage
space requirements for systems that maintain multiple cop-
ies of the same data. Instead of storing each copy of that data
separately (such that N copies of an X-byte item would
require NxX bytes of storage), a data deduplication system
only needs to store a single copy (requiring on X bytes of
storage). A data deduplication system also maintains meta-
data that tracks the number of copies represented by a given
item in the deduplicated storage area, which allows the
system to operate, from a user perspective, like a traditional
storage system. For example, the metadata ensures that an
item will not be deleted until all of the copies it represents
have been deleted.

Existing deduplication techniques tend to either work on
fixed-sized units of storage or on variable-sized items of data
such as files. Unfortunately, both techniques have their own
inefficiencies. Techniques that operate only on fixed-size
units of storage may miss opportunities to deduplicate
content that can be aligned differently within the fixed-sized
units each time that content is repeated. On the other hand,
systems that operate of variable-sized items often require an
undesirable amount of overhead to maintain metadata and
the like.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 is a block diagram of a data deduplication system,
according to one embodiment of the present invention.

FIG. 2 is an example of how two data streams can be
deduplicated for storage in a deduplicated data store, accord-
ing to one embodiment.

FIG. 3 is flowchart illustrating how data can be dedupli-
cated, according to one embodiment.

FIG. 4 is a block diagram of a computing system that
implements a data flow tracking module, according to one
embodiment.

FIG. 5 is a block diagram of a networked computing
system that implements a data flow tracking module, accord-
ing to one embodiment.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments of the
invention are provided as examples in the drawings and
detailed description. It should be understood that the draw-
ings and detailed description are not intended to limit the
invention to the particular form disclosed. Instead, the
intention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the inven-
tion as defined by the appended claims.

DETAILED DESCRIPTION

Ahybrid deduplication system operates to detect variable-
sized deduplication matches, while performing the storage

10

35

40

45

50

55

65

2

deduplication on fixed-size segments of data. To do this, the
hybrid deduplication system calculates unique identifiers for
variable-sized sections of data within each data stream being
written to a deduplicated data store. The hybrid deduplica-
tion system then compares those newly-calculated identifi-
ers to identifiers of variable-sized sections of data that have
already been stored within the deduplicated data store. If a
match is found, the hybrid deduplication system identifies
the location of each of the fixed-size data segment(s),
already stored in the deduplicated data store, that include the
identified variable-sized section of data. Instead of writing
the sections that match already-existing sections to the
deduplicated data store, the hybrid deduplication system
simply causes the creation of a reference to the identified
storage locations, indicating that the data stream being
written includes the data in these pre-existing storage loca-
tions. The hybrid deduplication system also writes the
sections of the data stream for which matches were not
found to the deduplicated data store, while storing the
identifiers calculated for those sections for later use in
locating deduplication matches.

FIG. 1 is a block diagram of a computing environment
that performs hybrid deduplication. As shown, the comput-
ing environment includes three client computing systems:
Client A, Client B, and Client C. Each client has a respective
client data stream, which can include application data used
by each client and/or user data generated by operating one
or more applications on the client. Client A has generated
Client Data Stream A, and Client B has generated Client
Data Stream B. Client C has also generated Client Data
Stream B.

Clients A-C (collectively referred to as simply clients) are
coupled to backup module 90 by network 55. Network 55
can be implemented using a Wide Area Network (WAN)
such as the Internet, one or more Local Area Networks
(LANSs), and/or one or more Storage Area Networks (SANs),
as well as various underlying technologies, including wire-
less links, fiber optic cables, electrical cables, and the like.

Backup module 90 is configured to backup the data
streams generated by the clients by creating a point-in-time
copy of each data stream and then storing that point-in-time
copy and associated metadata as a backup data stream within
data store 150. Each backup data stream includes a reference
stream and a data stream. The data streams for all of the
stored backup data streams are stored as part of a collection
of raw data 155, which is maintained as a deduplicated data
store by a hybrid deduplication module 100 within backup
module 90. The reference streams for each backup stream
identify which of the fixed-size segments within raw data
155 belong to each particular backup stream. Thus, Backup
A Reference Stream is the reference stream for the backup
of Client Data Stream A and identifies the fixed-size data
segments within raw data 155 that make up the data stream
of'that backup. Similarly, Backup B Reference Stream is the
reference stream for the backup of Client Data Stream B and
identifies the fixed-size data segments within raw data 155
that make up the data stream of the backup of Client Data
Stream B. Backup C Reference Stream is the reference
stream for the backup of Client Data Stream C and identifies
the fixed-size data segments within raw data 155 that make
up the data stream of the backup of Client Data Stream C.
As explained in more detail below, multiple different refer-
ence streams can refer to the same fixed-size data segment
within raw data 155, such that a single fixed-size data
segment can contain data that is included in multiple backup
data streams.

US 9,465,808 B1

3

As noted above, backup module 90 includes hybrid dedu-
plication module 100, which performs hybrid data dedupli-
cation on backup streams generated by backup module 90 in
order to maintain raw data 155 as a deduplicated data store.
Hybrid deduplication module 100 includes a variable-length
fingerprint module 110 that generates unique identifiers,
referred to herein as fingerprints, on several variable-length
sections of data within each backup stream generated by
backup module 90. Variable-length fingerprint module 110
can divide a backup stream into several variable-length
sections using any of a variety of techniques, like Rabin
fingerprint sliding windows. In some embodiments, there
may be minimum and/or maximum sizes specified for the
variable-length sections into which data streams can be
divided. Some of the variable-length sections into which a
data stream is divided may be overlapping, in at least some
embodiments.

For each variable-length section into which the data
stream has been divided, variable-length fingerprint module
110 calculates a fingerprint. Each fingerprint can be gener-
ated using one or more of a variety of checksum-, hash-, or
other fingerprint-generating algorithms.

Deduplication match module 120 within hybrid dedupli-
cation module 100 detects deduplication matches (i.e., sec-
tions of data that have the same content) on variable-length
sections of data, based upon the fingerprints generated by
variable-length fingerprint module 110. To detect a match,
deduplication match module 120 compares a newly-gener-
ated fingerprint provided by variable-length fingerprint
module 110 to one or more of a set of stored fingerprints.
The stored fingerprints are maintained in fingerprint store
140. It is noted that all or part of fingerprint store 140 may
be cached for faster access, and/or that information indexing
into fingerprint store 140 can be so cached.

Fingerprint store 140 can, in some embodiments, have a
maximum allowable size. When this size is exceeded, cer-
tain fingerprints may be deleted from and/or overwritten
within the fingerprint store in order to accommodate the
storage of newer fingerprints. For example, fingerprint store
140 can be maintained as a circular queue, where, once the
maximum size is reached, newer entries will overwrite the
oldest entries. Alternatively, a least-recently-used or other
cache replacement scheme can be used to control when
entries in fingerprint store 140 are removed.

If a newly-calculated fingerprint matches an existing
fingerprint, it indicates that the section of data identified by
the fingerprint has already been stored in raw data 155.
Accordingly, another copy of that section does not need to
be stored. When a match occurs for the fingerprint identi-
fying a particular section of an incoming data stream,
deduplication match module 120 can notify stream generator
130, which is described in more detail below, that a match
has been detected. Since the fingerprint matches an existing
fingerprint in fingerprint store 140, deduplication match
module 120 does not need to add that fingerprint to the store
(however, deduplication match module 120 may update the
fingerprint store to indicate that the particular fingerprint has
been more recently used, which may delay when that
fingerprint ages out of the fingerprint store).

If instead the newly-calculated fingerprint does not match
any of the fingerprints in fingerprint store 140, deduplication
match module 120 can notity stream generator 130 that no
match was found. Deduplication match module 120 can also
add the newly-calculated fingerprint to fingerprint store 140,
so that if the same section of data is later included in a
backup stream, that data can then be deduplicated.

10

15

20

25

30

35

40

45

50

55

60

65

4

Stream generator 130 generates the reference and data
streams that make up a backup stream and stores those
streams in data store 150. In particular, the data streams are
added to raw data 155, and the reference streams identify
(e.g., by identifying storage addresses) which fixed-length
data segments within raw data 155 are part of each particular
backup stream.

Stream generator 130 uses the information provided by
deduplication match module 120 to determine whether a
given section of data should be included in the backup’s data
stream or not. For example, if a match was detected for
particular fingerprint, stream generator 130 determines that
a copy of the section of data identified by that fingerprint is
already stored within raw data 155. As such, instead of
including that section of data in the data stream for the
backup (and causing a duplicate copy of that section of data
to unnecessarily be added to raw data 155), stream generator
130 can instead simply cause the backup’s reference stream
to refer to the already-stored section of data within raw data
155 and leave that section of data out of the backup’s data
stream.

If instead no fingerprint match was detected, it indicates
that no copy of the section of data identified by the newly-
calculated fingerprint already exists within raw data 155.
Thus, stream generator 130 can add the section of data to the
backup’s data stream, which in turn causes that section of
data to be added to raw data 155, and cause the reference file
to refer to the newly-added section of data within raw data
155. Additionally, stream generator 130 can add metadata to
fingerprint store 140 identifying the location of the fixed-
size segment(s) of data containing the newly-added section
of data within raw data 155. This metadata can be associated
with the section of data’s fingerprint and used to perform
deduplication if that same section of data is later included in
another incoming data stream.

As noted above, sections of data within an incoming data
stream can be of variable length. As a result of this, some of
the variable-size sections of data may not align with the
fixed-size data representation used by the underlying sys-
tem. For example, the underlying system may align data in
fixed-size blocks, but variable-sized sections may begin or
end in the middle of a block. As a result of this, a variable-
length section of data may not perfectly align with the
fixed-size data segments in raw data 155. Instead, that
variable-length section may begin somewhere in the middle
of'a fixed-size segment, and/or end somewhere in the middle
of a fixed-size segment. Furthermore, a variable-length
section may span multiple fixed-size segments.

Because of this potential discrepancy, to perform hybrid
deduplication, the reference stream will identify every fixed-
size segment that includes any portion of the variable-length
segment, even if that fixed-size segment also includes data
that is not part of the variable-length segment. In some
embodiments, the reference stream may also include infor-
mation identifying what portion of a given fixed-size seg-
ment is part of the variable-length segment.

In some embodiments, an underlying file system (such as
VERITAS File System, provided by Symantec Corporation
of Cupertino, Calif.) or other application (e.g., an intelligent
disk array controller, a network appliance, a volume man-
ager, or the like) for organizing data storage can maintain the
reference streams as part of the file system metadata in a
manner that prevents a given fixed-size segment from being
deleted from raw data 155 until every reference stream that
refers to that fixed-size segment has been deleted. This
prevents a reference stream from referring to a non-existent
fixed-size segment. As an example, a data stream of a given

US 9,465,808 B1

5

backup can be maintained as a file within the file system, and
the reference stream for that backup can include the file
system metadata that identifies the blocks within that file.
The file system can allow multiple files to contain the same
blocks, such that two different backups can each include a
data stream that includes the same data block. The reference
streams for each backup will include the file system meta-
data that identifies, for each file, the blocks within that file.
Reference generator 130 can create reference streams in
such an embodiment by interacting with the underlying file
system (e.g., by telling the file system that certain blocks of
the new data stream are virtual copies of blocks already
stored in another data stream).

By using an underlying mechanism such as a file system
to prevent a shared fixed-size segment from being deleted as
long as there is one or more reference stream that identifies
that fixed-size segment, backup module 90 effectively del-
egates the management of this aspect of data deduplication
to the underlying mechanism. Thus, instead of needing to
maintain reference counts for each fixed-size segment (in
many deduplication systems, such reference counts indicate
the number of times a segment is shared, and a segment
cannot be deleted until its reference count indicates that it is
no longer shared more than once), backup module 90 simply
relies upon the file system to maintain data integrity.

FIG. 2 shows a simplified example of how two incoming
data streams can contain the same variable-sized section of
data, and how hybrid deduplication can be performed on
those two incoming data streams. As shown, both Stream A
and Stream B contain the text string “thequickbrownfox,”
albeit at different offsets within their respective streams.
Because these streams contain the same content in a manner
that is unaligned with each other, simply comparing fixed-
size segments of the two streams would be unlikely to detect
the presence of the shared content, and thus it would not be
possible to deduplicate the common data. However, vari-
able-length match detection, such as that performed by
variable-length fingerprint module 110 of FIG. 1, is much
more likely to detect that the two streams share common
data. As such, this example presumes Stream A was written
to a deduplicated data store first, and that when Stream B
entered the system, a match was detected for the data section
containing “thequickbrownfox”.

As shown, the deduplicated data store (“Raw Data”) has
stored all of Stream A into five fixed-size segments. The
reference stream for Stream A identifies these segments as
being part of Stream A, as indicated by the pointers in that
reference stream pointing to the five segments that store
Stream A’s content. The variable-sized section of data that
is shared with Stream B begins in the middle of the second
fixed-size segment (from the left) and ends in the middle of
the fifth fixed-size segment.

When Stream B is written to the deduplicated data store,
the new, non-matching sections of Stream B are added to the
deduplicated data store, starting at the sixth fixed-size seg-
ment. Stream B’s reference stream points to the sixth
segment to indicate that it stores the first section of Stream
B. The next section of Stream B is the shared section.
Accordingly, instead of re-adding this section to Raw Data,
Stream B’s reference stream simply points to the fixed-size
segments that already store this content, which are the
second through fifth segments of Raw Data. Even though the
second and fifth segments also store data that is not part of
Stream B, Stream B’s reference stream still points to these
segments. (In some embodiments, Stream B’s reference
stream may also identify the particular portions of these
segments that store the data that is part of Stream B.)

25

40

45

6

The next section of Stream B is noted shared with Stream
A, and so this section is written to Raw Data in the seventh
through ninth fixed-size segments, and appropriate pointers
are added to Stream B’s reference stream. It is noted that the
last fixed-size segment only partially contains data for
Stream B.

FIG. 3 is a flowchart illustrating a method of performing
hybrid deduplication. This method can be performed by a
hybrid deduplication module such as that shown in FIG. 1.

The method begins at 300, when an incoming data stream
is subdivided into variable-length sections (e.g., according
to a rolling window algorithm or other algorithm for detect-
ing matching, variable-length, unaligned content within dif-
ferent data streams). The length of these sections can vary,
such that some sections have different lengths than other
sections within the same data stream. Additionally, some of
these sections may be overlapping, such that some content
is shared between two sections.

For a given variable-length section of the data stream, a
fingerprint (or other appropriate identifier usable to compare
the content of one section to another) is calculated, as shown
at 305. This fingerprint is then compared to several pre-
existing fingerprints, as shown at 310. The pre-existing
fingerprints identify variable-length sections of data that
have already been stored. If the fingerprint matches one of
the pre-existing fingerprints, it indicates that the section of
data represented by the fingerprint has already been stored.

Thus, if the fingerprint matches an existing fingerprint, the
section of data can be deduplicated. As shown at 315, the
fixed-size segment(s) of the underlying storage that already
store a copy of the section of data are identified (e.g., by
looking up a set of block addresses or other identifying
information that is associated with the matching pre-existing
fingerprint). Then, instead of writing another copy of the
section of data to the storage (by adding that section to the
deduplicated data stream being created for the incoming data
stream), the reference file for the incoming data stream is
simply updated to identify the fixed-size segments that
already store the section of data, as shown at 320.

It is noted that the identified fixed-size segments may not
have the same alignment as the section of data, such that
there may be additional content, which is not part of the
section of data or the incoming data stream, at the beginning
and/or end of the fixed-size segments. In some embodi-
ments, the reference file may additionally specify which of
the data in the fixed-length segments is and is not part of the
associated data stream.

Returning to 310, if the fingerprint does not match any of
the existing fingerprints, it indicates that the section of data
has not already been stored. Accordingly, the fingerprint of
that section of data is stored for use in subsequent dedupli-
cation at 325. That section of data is added to the dedupli-
cated data stream being written to the underlying storage,
and the reference file for the incoming data stream is
modified to identify the fixed-size data segments allocated to
store the section of data, as shown at 330.

Operation 310 is repeated for each variable-sized section
of data in the incoming data stream, as indicated at 340. The
deduplicated data stream and associated reference stream are
written to the underlying data store, as shown at 350 (this
operation may actually be performed during the perfor-
mance of the other operations of FIG. 3).

Returning to FIG. 1, in this example, a hybrid dedupli-
cation module 100 is part of a backup module 90 that is
configured to perform hybrid deduplication as part of the

US 9,465,808 B1

7

backup process. However, in other embodiments, hybrid
deduplication may be performed outside of the backup
context.

Furthermore, the illustrated example shows a system in
which backups are performed over a network for several
different backup clients. In alternative embodiments, the
entire system (client, backup module, and backup storage)
may all be contained within a single computing device.

Returning to Clients A-C, please note that the number of
clients can vary among systems and embodiments. Each of
the clients can be implemented as a computing device such
as a personal computer, laptop computer, server, personal
digital assistant, cell phone, or the like. Similarly, backup
module 90 can be implemented on a computing device. A
detailed example of a computing device is illustrated in FIG.
4, as described below.

Data store 150 is a storage device for storing data. Such
a storage device can provide persistent data storage, such
that data stored on such a storage device will remain stored
even after the storage device is powered off. Such a storage
device can be, for example, a hard disk, a compact disc
(CD), a digital versatile disc (DVD), or other mass storage
device, or a storage system (e.g., a redundant array of
independent disks (RAID) system or an optical storage
jukebox) that includes an array of such storage devices. Such
a storage device can also be a virtual or logical storage
device that is implemented on such physical storage devices
and/or storage systems. For example, such a storage device
can be a logical volume that is implemented on a RAID
storage system. Additionally, such a storage device can
include one or more storage devices. A storage device can
also include one or more types of storage media, including
solid state media (e.g., flash drives), optical media (e.g., CDs
and DVDs), and magnetic media (e.g., hard disks or mag-
netic tape). In some embodiments, such storage devices can
be implemented using cloud storage, in which the storage
device is a logical storage device to which physical storage
device(s) are allocated on an as-needed and/or as-contracted
basis.

FIG. 4 is a block diagram of a computing system 410 that
includes a hybrid deduplication module as described above.
Computing system 410 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of
computing system 410 include, without limitation, any one
or more of a variety of devices including workstations,
personal computers, laptops, client-side terminals, servers,
distributed computing systems, handheld devices (e.g., per-
sonal digital assistants and mobile phones), network appli-
ances, storage controllers (e.g., array controllers, tape drive
controller, or hard drive controller), and the like. In its most
basic configuration, computing system 410 may include at
least one processor 414 and a system memory 416. By
executing the software that implements a hybrid deduplica-
tion module 100, computing system 410 becomes a special
purpose computing device that is configured to perform
hybrid deduplication that detects deduplication matches on
variable-size sections of data and then deduplicates storage
in fixed-size segments of data.

Processor 414 generally represents any type or form of
processing unit capable of processing data or interpreting
and executing instructions. In certain embodiments, proces-
sor 414 may receive instructions from a software application
or module. These instructions may cause processor 414 to
perform the functions of one or more of the embodiments
described and/or illustrated herein. For example, processor
414 may perform and/or be a means for performing the

10

15

20

25

30

35

40

45

50

55

60

65

8

operations described herein. Processor 414 may also per-
form and/or be a means for performing any other operations,
methods, or processes described and/or illustrated herein.

System memory 416 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
instructions. Examples of system memory 416 include,
without limitation, random access memory (RAM), read
only memory (ROM), flash memory, or any other suitable
memory device. Although not required, in certain embodi-
ments computing system 410 may include both a volatile
memory unit (such as, for example, system memory 416)
and a non-volatile storage device (such as, for example,
primary storage device 432, as described in detail below). In
one example, program instructions executable to implement
an advisory metadata module 64 (e.g., as shown in FIG. 1)
may be loaded into system memory 416.

In certain embodiments, computing system 410 may also
include one or more components or elements in addition to
processor 414 and system memory 416. For example, as
illustrated in FIG. 4, computing system 410 may include a
memory controller 418, an Input/Output (I/O) controller
420, and a communication interface 422, each of which may
be interconnected via a communication infrastructure 412.
Communication infrastructure 412 generally represents any
type or form of infrastructure capable of facilitating com-
munication between one or more components of a comput-
ing device. Examples of communication infrastructure 412
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Compo-
nent Interconnect (PCI), PCI express (PCle), or similar bus)
and a network.

Memory controller 418 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of computing system 410. For example, in certain
embodiments memory controller 418 may control commu-
nication between processor 414, system memory 416, and
1/O controller 420 via communication infrastructure 412. In
certain embodiments, memory controller 418 may perform
and/or be a means for performing, either alone or in com-
bination with other elements, one or more of the operations
or features described and/or illustrated herein.

1/O controller 420 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, in certain embodiments /O controller 420 may
control or facilitate transfer of data between one or more
elements of computing system 410, such as processor 414,
system memory 416, communication interface 422, display
adapter 426, input interface 430, and storage interface 434.

Communication interface 422 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between computing system 410
and one or more additional devices. For example, in certain
embodiments communication interface 422 may facilitate
communication between computing system 410 and a pri-
vate or public network including additional computing sys-
tems. Examples of communication interface 422 include,
without limitation, a wired network interface (such as a
network interface card), a wireless network interface (such
as a wireless network interface card), a modem, and any
other suitable interface. In at least one embodiment, com-
munication interface 422 may provide a direct connection to
a remote server via a direct link to a network, such as the
Internet. Communication interface 422 may also indirectly
provide such a connection through, for example, a local area

US 9,465,808 B1

9

network (such as an Ethernet network), a personal area
network, a telephone or cable network, a cellular telephone
connection, a satellite data connection, or any other suitable
connection.

In certain embodiments, communication interface 422
may also represent a host adapter configured to facilitate
communication between computing system 410 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Serial Advanced Technology
Attachment (SATA) and external SATA (eSATA) host adapt-
ers, Advanced Technology Attachment (ATA) and Parallel
ATA (PATA) host adapters, Fibre Channel interface adapters,
Ethernet adapters, or the like.

Communication interface 422 may also allow computing
system 410 to engage in distributed or remote computing.
For example, communication interface 422 may receive
instructions from a remote device or send instructions to a
remote device for execution.

As illustrated in FIG. 4, computing system 410 may also
include at least one display device 424 coupled to commu-
nication infrastructure 412 via a display adapter 426. Dis-
play device 424 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 426. Similarly, display adapter 426
generally represents any type or form of device configured
to forward graphics, text, and other data from communica-
tion infrastructure 412 (or from a frame buffer, as known in
the art) for display on display device 424.

As illustrated in FIG. 4, computing system 410 may also
include at least one input device 428 coupled to communi-
cation infrastructure 412 via an input interface 430. Input
device 428 generally represents any type or form of input
device capable of providing input, either computer or human
generated, to computing system 410. Examples of input
device 428 include, without limitation, a keyboard, a point-
ing device, a speech recognition device, or any other input
device.

As illustrated in FIG. 4, computing system 410 may also
include a primary storage device 432 and a backup storage
device 433 coupled to communication infrastructure 412 via
a storage interface 434. Storage devices 432 and 433 gen-
erally represent any type or form of storage device or
medium capable of storing data and/or other computer-
readable instructions. For example, storage devices 432 and
433 may be a magnetic disk drive (e.g., a so-called hard
drive), a floppy disk drive, a magnetic tape drive, an optical
disk drive, a flash drive, or the like. Storage interface 434
generally represents any type or form of interface or device
for transferring data between storage devices 432 and 433
and other components of computing system 410. A storage
device like primary storage device 432 can store information
such as advisory metadata, non-advisory metadata, and file
system objects such as files and directories.

In certain embodiments, storage devices 432 and 433 may
be configured to read from and/or write to a removable
storage unit configured to store computer software, data, or
other computer-readable information. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Storage devices 432 and 433 may also
include other similar structures or devices for allowing
computer software, data, or other computer-readable instruc-
tions to be loaded into computing system 410. For example,

25

30

40

45

55

10

storage devices 432 and 433 may be configured to read and
write software, data, or other computer-readable informa-
tion. Storage devices 432 and 433 may also be a part of
computing system 410 or may be a separate device accessed
through other interface systems.

Many other devices or subsystems may be connected to
computing system 410. Conversely, all of the components
and devices illustrated in FIG. 4 need not be present to
practice the embodiments described and/or illustrated
herein. The devices and subsystems referenced above may
also be interconnected in different ways from that shown in
FIG. 4.

Computing system 410 may also employ any number of
software, firmware, and/or hardware configurations. For
example, one or more of the embodiments disclosed herein
may be encoded as a computer program (also referred to as
computer software, software applications, computer-read-
able instructions, or computer control logic) on a computer-
readable storage medium. Examples of computer-readable
storage media include magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid-
state drives and flash media), and the like. Such computer
programs can also be transferred to computing system 410
for storage in memory via a network such as the Internet or
upon a carrier medium.

The non-transitory computer-readable medium containing
the computer program may be loaded into computing system
410. All or a portion of the computer program stored on the
non-transitory computer-readable medium may then be
stored in system memory 416 and/or various portions of
storage devices 432 and 433. When executed by processor
414, a computer program loaded into computing system 410
may cause processor 414 to perform and/or be a means for
performing the functions of one or more of the embodiments
described and/or illustrated herein. Additionally or alterna-
tively, one or more of the embodiments described and/or
illustrated herein may be implemented in firmware and/or
hardware. For example, computing system 410 may be
configured as an application specific integrated circuit
(ASIC) adapted to implement one or more of the embodi-
ments disclosed herein.

FIG. 5 is a block diagram of a network architecture 500
in which client systems 510, 520, and 530 and servers 540
and 545 may be coupled to a network 550. Client systems
510, 520, and 530 generally represent any type or form of
computing device or system, such as computing system 410
in FIG. 4.

Similarly, servers 540 and 545 generally represent com-
puting devices or systems, such as application servers or
database servers, configured to provide various database
services and/or run certain software applications. Network
550 generally represents any telecommunication or com-
puter network including, for example, an intranet, a wide
area network (WAN), a local area network (LAN), a per-
sonal area network (PAN), or the Internet. In one example,
one or more of servers 540 and 545 and/or client systems
510, 520, and 530 may include hybrid deduplication module
100 as shown in FIG. 1.

As illustrated in FIG. 5, one or more storage devices
540(1)-(N) may be directly attached to server 540. Similarly,
one or more storage devices 570(1)-(N) may be directly
attached to server 545. Storage devices 540(1)-(N) and
storage devices 570(1)-(N) generally represent any type or
form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 540(1)-(N) and storage

US 9,465,808 B1

11

devices 570(1)-(N) may represent network-attached storage
(NAS) devices configured to communicate with servers 540
and 545 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS). Such storage devices can store
advisory metadata, non-advisory metadata, and file system
objects, as described above.

Servers 540 and 545 may also be connected to a storage
area network (SAN) fabric 580. SAN fabric 580 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between mul-
tiple storage devices. SAN fabric 580 may facilitate com-
munication between servers 540 and 545 and a plurality of
storage devices 590(1)-(N) and/or an intelligent storage
array 595. SAN fabric 580 may also facilitate, via network
550 and servers 540 and 545, communication between client
systems 510, 520, and 530 and storage devices 590(1)-(N)
and/or intelligent storage array 595 in such a manner that
devices 590(1)-(N) and array 595 appear as locally attached
devices to client systems 510, 520, and 530. As with storage
devices 540(1)-(N) and storage devices 570(1)-(N), storage
devices 590(1)-(N) and intelligent storage array 595 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

In certain embodiments, and with reference to computing
system 410 of FIG. 4, a communication interface, such as
communication interface 322 in FIG. 5, may be used to
provide connectivity between each client system 510, 520,
and 530 and network 550. Client systems 510, 520, and 530
may be able to access information on server 540 or 545
using, for example, a web browser or other client software.
Such software may allow client systems 510, 520, and 530
to access data hosted by server 540, server 545, storage
devices 540(1)-(N), storage devices 570(1)-(N), storage
devices 590(1)-(N), or intelligent storage array 595.
Although FIG. 5 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or illustrated herein are not limited to the Internet or any
particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the embodiments disclosed herein may be encoded as a
computer program and loaded onto and executed by server
540, server 545, storage devices 540(1)-(N), storage devices
570(1)-(N), storage devices 590(1)-(N), intelligent storage
array 595, or any combination thereof. All or a portion of
one or more of the embodiments disclosed herein may also
be encoded as a computer program, stored in server 540, run
by server 545, and distributed to client systems 510, 520,
and 530 over network 550.

In some examples, all or a portion of one of the systems
in FIGS. 1, 4, and 5 may represent portions of a cloud-
computing or network-based environment. Cloud-comput-
ing environments may provide various services and appli-
cations via the Internet. These cloud-based services (e.g.,
software as a service, platform as a service, infrastructure as
a service, etc.) may be accessible through a web browser or
other remote interface. Various functions described herein
may be provided through a remote desktop environment or
any other cloud-based computing environment.

In addition, one or more of the components described
herein may transform data, physical devices, and/or repre-
sentations of physical devices from one form to another. For
example, a hybrid deduplication module may transform a
data stream into a deduplicated data stream and a reference
file.

10

15

20

25

30

35

40

45

50

55

60

65

12

Although the present invention has been described in
connection with several embodiments, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

What is claimed is:
1. A method comprising:
storing a plurality of fixed-size data segments on a storage
device;
calculating a plurality of stored identifiers, wherein
a first stored identifier of the plurality of stored iden-
tifiers identifies a sub-portion of a first fixed-size data
segment of the plurality of fixed-size data segments;
calculating a plurality of identifiers for respective sections
of a data stream generated by a client, in response to
detecting that the data stream is being written, or is
selected to be written, to the storage device, wherein
the data stream comprises two variable-length data
segments, and
the plurality of identifiers comprise a first identifier
for a first section of the data stream;
detecting that the first identifier matches a first stored
identifier; and
in response to the detecting, causing an additional refer-
ence to be generated instead of writing the first section
of the data stream to the storage device as part of a
deduplicated data stream, wherein
the deduplicated data stream is associated with a
reference stream,
the additional reference is included as part of the
reference stream,
the additional reference identifies the sub-portion of
the first fixed-size data segment as part of the data
stream, and
the first fixed-size data segment has a different length
than the first section of the data stream, and
the calculating, the detecting, and the causing are
performed by a computing device implementing a
deduplication module, wherein
the reference stream identifies every fixed-size data
segment of the plurality of fixed-size data seg-
ments that comprises at least one portion of a
variable-length data segment of the two variable-
length data segments even if the first fixed-size
data segment comprises data that is not part of the
variable-length data segment.
2. The method of claim 1, further comprising:
detecting that a second identifier for a second section of
the data stream does not match any of the stored
identifiers;
adding the second identifier to the plurality of stored
identifiers; and
writing the second section of the data stream to the storage
device as one or more additional fixed-size data seg-
ments.
3. The method of claim 2, wherein
the adding comprises overwriting one of the plurality of
stored identifiers with the second identifier.
4. The method of claim 1, wherein
the causing the additional reference to be generated
comprises causing a file system to identify that both the
data stream and the plurality of fixed-size data seg-
ments include the sub-portion of the first fixed-size data
segment.

US 9,465,808 B1
13

5. The method of claim 1, wherein

the plurality of fixed-size data segments comprises a first
backup stream and the data stream is a second backup
stream.

6. The method of claim 5, wherein

the first backup stream is a backup of a first client and the

second backup stream is a backup of a second client.

7. The method of claim 1, further comprising

a file system tracking how many data streams include the

sub-portion of the first fixed-size data segment and
preventing deletion of the sub-portion of the first fixed-
size data segment from the storage device as long as
any data stream stored on the storage device still
includes the sub-portion of the first fixed-size data
segment.

8. The method of claim 1, wherein

the reference stream comprises information identifying a

portion of the first fixed-size data segment that is part
of the variable-length data segment.

9. The method of claim 1, wherein

the client is one of a plurality of clients,

the reference stream is one of a plurality of reference

streams, and

each client of the plurality of clients is associated with at 25

least one reference stream of the plurality of reference
streams.

10. A non-transitory computer readable storage medium
comprising program instructions executable by one or more
processors to:

store a plurality of fixed-size data segments on a storage

device;

calculate a plurality of stored identifiers, wherein

a first stored identifier of the plurality of stored iden-
tifiers identifies a sub-portion of a first fixed-size data 35
segment of the plurality of fixed-size data segments;

calculate a plurality of identifiers for respective sections

of a data stream generated by a client, in response to

detecting that the data stream is being written, or is

selected to be written, to the storage device, wherein 40

14

data segment comprises data that is not part of the
variable-length data segment.

11. The non-transitory computer readable storage medium
of claim 10, wherein the program instructions are further

5 executable to:
detect that a second identifier for a second section of the
data stream does not match any of the stored identifiers;
add the second identifier to the plurality of stored iden-
tifiers; and
0 write the second section of the data stream to the storage
device as one or more additional fixed-size data seg-
ments.

12. The non-transitory computer readable storage medium
of claim 11, wherein adding the second identifier comprises

5 overwriting one of the plurality of stored identifiers with the
second identifier.

13. The non-transitory computer readable storage medium
of claim 10, wherein causing the additional reference to be
generated comprises causing a file system to identify that

20 both the data stream and the plurality of fixed-size data
segments include the sub-portion of the first fixed-size data
segment.

14. The non-transitory computer readable storage medium
of claim 10, wherein the plurality of fixed-size data seg-
ments comprises a first backup stream and the data stream is
a second backup stream.

15. The non-transitory computer readable storage medium
of claim 14, wherein the first backup stream is a backup of
a first client and the second backup stream is a backup of a
30 second client.

16. The non-transitory computer readable storage medium
of claim 10, wherein the program instructions are further
executable to implement a file system configured to track
how many data streams include the sub-portion of the first
fixed-size data segment and preventing deletion of the
sub-portion of the first fixed-size data segment from the
storage device as long as any data stream stored on the
storage device still includes the sub-portion of the first
fixed-size data segment.

17. A system comprising:

—

—

the data stream comprises two variable-length data
segments, and

the plurality of identifiers comprise a first identifier
for a first section of the data stream;

one or more processors; and

a memory storing program instructions executable by the
one or more processors to:

store a plurality of fixed-size data segments on a storage

detect that the first identifier matches a first stored iden- 45 device;
tifier; and calculate a plurality of stored identifiers, wherein

in response to the detecting, causing an additional refer- a first stored identifier of the plurality of stored iden-
ence to be generated instead of writing the first section tifiers identifies a sub-portion of a first fixed-size data
of the data stream to the storage device as part of a segment of the plurality of fixed-size data segments;
deduplicated data stream, wherein 50 calculate a plurality of identifiers for respective sections

the deduplicated data stream is associated with a

of a data stream generated by a client, in response to

reference stream,

the additional reference is included as part of the
reference stream,

the additional reference identifies the sub-portion of 55
the first fixed-size data segment as part of the data
stream, and

the first fixed-size data segment has a different length
than the first section of the data stream, and

the calculating, the detecting, and the causing are 60
performed by a computing device implementing a
deduplication module, wherein

the reference stream identifies every fixed-size data
segment of the plurality of fixed-size data seg-
ments that comprises at least one portion of a 65
variable-length data segment of the two variable-
length data segments even if the first fixed-size

detecting that the data stream is being written, or is
selected to be written, to the storage device, wherein
the data stream comprises two variable-length data
segments, and
the plurality of identifiers comprise a first identifier
for a first section of the data stream;
detect that the first identifier matches a first stored iden-
tifier; and
in response to the detecting, causing an additional refer-
ence to be generated instead of writing the first section
of the data stream to the storage device as part of a
deduplicated data stream, wherein
the deduplicated data stream is associated with a
reference stream,
the additional reference is included as part of the
reference stream,

US 9,465,808 B1

15

the additional reference identifies the sub-portion of
the first fixed-size data segment as part of the data
stream, and

the first fixed-size data segment has a different length
than the first section of the data stream, and

the calculating, the detecting, and the causing are
performed by a computing device implementing a
deduplication module, wherein

the reference stream identifies every fixed-size data
segment of the plurality of fixed-size data seg-
ments that comprises at least one portion of a
variable-length data segment of the two variable-
length data segments even if the first fixed-size
data segment comprises data that is not part of the
variable-length data segment.

18. The system of claim 17, wherein the program instruc-
tions are further executable to:

detect that a second identifier for a second section of the

data stream does not match any of the stored identifiers;
add the second identifier to the plurality of stored iden-
tifiers; and

write the second section of the data stream to the storage

device as one or more additional fixed-size data seg-
ments.

19. The system of claim 17, wherein causing the addi-
tional reference to be generated comprises causing a file
system to identify that both the data stream and the plurality
of fixed-size data segments include the sub-portion of the
first fixed-size data segment.

20. The system of claim 17, wherein the plurality of
fixed-size data segments comprises a first backup stream and
the data stream is a second backup stream.

21. The system of claim 20, wherein the first backup
stream is a backup of a first client and the second backup
stream is a backup of a second client.

22. The system of claim 17, the program instructions are
further executable to implement a file system configured to
track how many data streams include the sub-portion of the
first fixed-size data segment and preventing deletion of the
sub-portion of the first fixed-size data segment from the
storage device as long as any data stream stored on the
storage device still includes the sub-portion of the first
fixed-size data segment.

15

20

35

40

16

23. A method comprising:

storing a plurality of fixed-size data segments on a storage
device, wherein the plurality of fixed-size data seg-
ments comprises a first backup data stream associated
with a first client;

calculating a plurality of stored identifiers, wherein a first
stored identifier of the plurality of stored identifiers
identifies a sub-portion of a first fixed-size data seg-
ment of the plurality of fixed-size data segments;

calculating a plurality of identifiers for respective sections
of a backup data stream generated by a client in
response to detecting that the second backup data
stream is being written, or is selected to be written, to
the storage device, wherein the data stream comprises
two variable-length data segments, and wherein the
second backup data stream is associated with a second
client, and wherein the plurality of identifiers comprise
a first identifier for a first section of the second backup
data stream;

detecting that the first identifier matches the first stored
identifier; and

in response to the detecting, causing an additional refer-
ence to be generated instead of writing the first section
of a second backup data stream to the storage device as
part of a deduplicated data stream, wherein the dedu-
plicated data stream is associated with a reference
stream and the additional reference is included as part
of the reference stream, wherein the additional refer-
ence identifies the sub-portion of the first fixed-size
data segment as part of the second backup data stream,
wherein the first fixed-size data segment has a different
length than the first section of the second backup data
stream, and wherein the calculating, the detecting, and
the causing are performed by a computing device
implementing a deduplication module, wherein

the reference stream identifies every fixed-size data seg-
ment of the plurality of fixed-size data segments that
comprises at least one portion of a variable-length data
segment of the two variable-length data segments even
if the first fixed-size data segment comprises data that
is not part of the variable-length data segment.

#* #* #* #* #*

